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We describe two mechanisms for the destruction of a rotating wave in an excitable medium by
using (1) a wave containing no topological defects, and (2) a wave with a pair of topological defects
of opposite charge. Both mechanisms result in the displacement of the core of the defect, and can be
repeated as needed to expel the rotating wave out of the system. These two mechanisms provide a
way of controling initial stages of spatiotemporal chaos in excitable media. Applications to cardiac

fibrillation are discussed.

PACS number(s): 05.45.+b, 05.70.Ln, 87.22.As, 87.10.+¢

Spatiotemporal chaos in active media often takes the
form of interacting topological defects, each of them cor-
responding to a rotating spiral wave. Defect mediated
disorder was observed in Ginzburg-Landau equations [1],
in the theoretical models of excitable media [2,3], in ex-
periments in a chemical excitable medium [4], and in lig-
uid crystals [5]. Approaches to control temporal [6] and
spatiotemporal [7,8] chaos are based on the ideas of sta-
bilizing unstable orbits. The approach proposed here to
control spatiotemporal chaos in excitable media consists
of destroying topological defects (note that transition to
chaos in excitable media, e.g., in the cardiac muscle, can
be initiated by nucleation of a single rotating wave only
[9])-

The problem of quenching rotating waves has been
intensively investigated in connection with cardiology,
since rotating waves are responsible for the initiation of
chaos in the cardiac muscle [10]. It was found in one-
dimensional (1D) models [11] that an electrical impulse
can stop wave rotation around a circle. Properly timed
local electrical impulses are widely used in cardiology to
restore normal wave propagation [11,12] and to prevent
the transition to chaos. But this procedure [called anti-
tachycardia pacing (ATP)] is not always efficient. The
underlying mechanisms governing its success or failure
are not yet clear. So, it is interesting to understand the
underlying physics of the elimination of spiral waves.

A rotating wave is a robust structure, and only very
special wave configurations, aimed at annihilating its
topological charge, can be used. We describe here two
mechanisms: First, quenching a vortex by means of a
circular wave which (due to its zero topological charge)
cannot directly annihilate with the initial vortex. How-
ever, its interaction with the vortex core results in the dis-
placement of the latter over a distance of the order of the
spiral wavelength. A vortex situated close to the bound-
ary can thus be pushed out of the excitable medium and
disappear. Second, quenching a vortex by using a pair of
topological defects of opposite charges, one of them anni-
hilating with the initial vortex, the other moving outside
the medium.

1063-651X/95/52(3)/2458(5)/$06.00 52

Below we show a numerical simulation of the quench-
ing of a rotating wave. The Barkley [13] model, a mod-
ification of van der Pol-type equations, which permits
fast calculations, and catches the essential (topological)
features of excitable media, was used:

({;—QZ =elu(l—u) [u—a(v+b)] + Vi,
P (1)
—8—t_ =Uu-—v.

Here, u is an activator variable, describing the excita-
tion, and v is an inhibitor variable; its slow dynamics are
responsible for returning the system back to the resting
point.

Mechanism 1 to quench the rotating spiral wave is
shown in Fig. 1. A circular wave was used. When it
reaches the core of the spiral, it induces its displacement
[Fig. 1(f)]. This displacement quenches the spiral if its
core or the wave tip are moved out of the medium [Fig.
1(f), dashed square].

Details of the wave interaction are shown in Figs. 1(a)-
1(e). The circular wave was created by exciting the
medium from an electrode [black square in Fig. 1(a)].
While propagating [Fig. 1(b)], the circular wave merges
with the rotating wave [Fig. 1(c)]. Then the circular
wave is broken [Fig. 1(d)] because propagation through
the unrestored, or refractory wave tail [hatched in Fig.
1(d)] is impossible. The newly formed wave break 2 prop-
agates along the refractory tail of the spiral [Figs. 1(d)
and 1(e)]. Here it cannot curl into a rotating wave, be-
cause for this it should enter the refractory region. It
curls up into a spiral wave only later [Fig. 1(f)], when it
lags behind the rotating wave, and is not restricted any-
more by its refractory tail. This results in a displacement
of the core [Fig. 1(f)]. The displacement is an estimate of
the efficiency of control of the rotating wave: the larger
the displacement, the more efficient the method of con-
trol.

Mechanism 2 is shown in Fig. 2. A wave with a pair
of topological defects of opposite charge [Fig. 2(b)] was
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used. It was created by exciting the medium from the
same electrode [black square in Figs. 1(a) and 2(a)]. Dif-
ferent results can be obtained depending on the state of
the excitable medium at the electrode location. When a
wave is rotating in the medium, the state of each point
(situated outside the vortex core) changes periodically
[Fig. 3(a)]. A circular wave is created when an elec-
trode excites the medium which is sufficiently restored
after the previous excitation [phase angle § > g in Fig.
3(a)]. No excitation can be induced when the medium is
in the refractory state (6 < 6r), and a semicircular wave
is created when the medium is in the intermediate, so
called vulnerable state (6 < 6 < 0g) [14]. The vulnera-
ble zone for the rotating spiral wave is shown as zone 3
in Fig. 3(b).

In Fig. 2(b), there are a total of three topological
defects. If they evolve independently, they give rise to
three rotating spiral waves. But when they are situated
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close to one another, their interaction changes the result.
The defects with opposite topological charges [defects 1
and 2 in Fig. 2(b)] fuse, wave tips interconnect, and the
defects annihilate [Fig. 2(d)]. In the small box [dashed
square in Fig. 2(d)], the remaining defect (3) is situated
close to the boundary of the medium, merges with it, and
disappears. The spiral wave is quenched. A version of
this mechanism was described earlier [15].

In the general case, the defects are situated far from the
boundary, and none of them merge with it. In this case,
the rotating wave is not quenched, but appears located
in another place [Fig. 2(e)].

The dependence of the shift of the rotating wave on
the position of the electrode is shown in Fig. 4. Note a
sharp jump in Fig. 4(C) at 6 ~ 170°; here, mechanism 2
is replaced by mechanism 1. Note that mechanism 1 can
be realized for a much larger range of phase angles § than
mechanism 2; its effectiveness decreases with increasing

FIG. 1. The displacement and quenching of a spiral wave by a circular wave. (a) ¢ = 0. Initial position of the spiral wave.
The core is shown by a dashed line, the tip is labeled by 1. (b) t = 0.16. A circular wave created by a stimulus (u = 0.9)
delivered at t = 0 from the electrode [black square in (a)]. (c) t =0.25. The circular wave, while propagating, reaches the tip
of the spiral wave. (d) ¢ = 0.34. The circular wave is broken. The new tip is labeled by 2. The dashed line is the border of
refractory tail (hatched). (e) t = 0.57. Tip 2 propagates along the refractory tail of initial spiral wave. (f) ¢t = 2.15. In a box
of smaller size (L = 17, dashed square), tip 3 has moved out of the medium, and the spiral wave is quenched. In the original
box (L = 30), tip 3 has formed a stationary rotating spiral wave. Its core is shown by dashed circle 2. The total displacement
of the spiral wave is shown by the arrow. Two-dimensional numerical simulation of the Barkley model (grid: 256 x 256 points,
a = 0.53, b = 0.05, ¢ = 0.02; size of the box L = 30). Activator is visualized. The time unit is the period of rotation of the
spiral.
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FIG. 2. The displacement and quenching of a spiral wave by a wave with two defects. (a) t = 0. Initial position of the spiral
wave. The core is shown by a dashed line, the tip is marked by 1. (b) ¢ = 0.13. A semicircular wave with two defects (tips 2 and
3) is created by a stimulus (u = 0.9) delivered at ¢t = 0 from the electrode [black square in (a)]. (c) ¢ = 0.3. The semicircular
wave, while propagating, reaches the tip of the spiral wave. (d) ¢t = 0.56. Tips 1 and 2 have annihilated. Again, there is only
one defect (but it is situated at a new location). In a box of smaller size (L = 17, dashed square), tip 3 has reached the border,
and the spiral wave is quenched. (e) ¢t = 1.34. In the original box (L = 30), tip 3 has formed a stationary rotating spiral wave.
Its core is shown by dashed circle 3. The total displacement of the spiral wave is shown by an arrow. Parameters are the same
as in Fig. 1.
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FIG. 3. (a) Distribution of activator and inhibitor in a rotating wave. (b) Space distribution of excitability. 1 is the excited
zone, 2 is the refractory zone, 3 is the vulnerable zone, 4 is the resting zone. An electrical stimulus delivered in zone 4 creates a
circular wave [as in Fig. 1(b)], in zone 3—a semicircular wave [a wave with two defects, as in Fig. 2(b)], in zones 1 or 2—does
not create any wave.



0 [Fig. 4(B)] and with distance from the vortex core (not
shown in the figure).

The mechanisms found here in a 2D excitable medium
underly the physics of eliminating rotating waves in car-
diac muscle, and they are generic in the sense that they
are not dependent upon the exact nature of excitable
medium. Changing the model for the excitable medium
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will affect the quantitative estimates only.

For both mechanisms, the shift of the rotating wave
is about A/2 (A is the spiral wavelength). In cardiac
muscle, A >~ 10 — 20 cm [10], so the results give a rea-
sonable explanation for both the success and failure of
the ATP technique used in cardiology for elimination of
rotating waves. The appropriate geometry for modeling
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FIG. 4. Vortex displacement. Right column [(A)-(C)] displacement by a circular wave, left column [(a)—(c)]—by a wave with
two defects. a, A. Electrode locations are shown by arabic numerals, new position of the vortex cores—by roman numerals.
b,B, c, C. Dependence of the vortex displacement on parameters. The space unit is the wave length of the spiral.
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excitation propagation in cardiac muscle is a semisphere
with boundaries (because auricles are electrically insu-
lated from ventricles). Its diameter is about 6 cm, so the
distance to the boundaries is not larger than A/2. But
the real geometry is 3D. Of course, it is possible to move
the spiral along the surface. But the spiral can also be
moved perpendicular to the surface. Here, the spiral can
be destroyed much more easily, because d <« A (thickness
d of auricles is several mm).

It is interesting to notice the analogy between mecha-
nism 1 and the phenomenon of wave induced drift [16]—a
drift of a spiral induced by a wavetrain, with a frequency
superior to the frequency of the spiral. The first few
such waves annihilate with those emitted by the spiral;
then as each new wave reaches the core of the spiral, the
core-wave interaction creates a displacement of the spiral
core.

Mechanism 2 looks like a high codimension phe-
nomenon, as the exact reconnection of two vortices would
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require the precise and unique location of the electrode.
But this is not the case. First, the interaction between
two closely spaced vortices helps their reconnection. This
type of interaction has been studied in the Ginzburg-
Landau equation, and gives qualitatively good prediction
(two vortices of opposite charges attract, and annihilate
when they are close enough, see, e.g., [17,18]). Second,
in the case where the reconnection is not perfect, there
remains a little “arm” to the wave, one small enough to
shrink. In addition to vortex interactions, retractation
mechanisms similar to the shrinking of a finger soliton
(e.g., in liquid crystals) may be involved here. Further
investigation of the underlying nonlinear wave problems
may result in increasing the efficiency and creating new
approaches to controling rotating waves.

We are indebted to Jocelyne Lega for valuable discus-
sions.
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FIG. 1. The displacement and quenching of a spiral wave by a circular wave. (a) t = 0. Initial position of the spiral wave.
The core is shown by a dashed line, the tip is labeled by 1. (b) t = 0.16. A circular wave created by a stimulus (v = 0.9)
delivered at ¢ = 0 from the electrode [black square in (a)]. (c) ¢ =0.25. The circular wave, while propagating, reaches the tip
of the spiral wave. (d) ¢t = 0.34. The circular wave is broken. The new tip is labeled by 2. The dashed line is the border of
refractory tail (hatched). (e) t = 0.57. Tip 2 propagates along the refractory tail of initial spiral wave. (f) ¢ = 2.15. In a box
of smaller size (L = 17, dashed square), tip 3 has moved out of the medium, and the spiral wave is quenched. In the original
box (L = 30), tip 3 has formed a stationary rotating spiral wave. Its core is shown by dashed circle 2. The total displacement
of the spiral wave is shown by the arrow. Two-dimensional numerical simulation of the Barkley model (grid: 256 x 256 points,
a = 0.53, b = 0.05, € = 0.02; size of the box L = 30). Activator is visualized. The time unit is the period of rotation of the
spiral.



FIG. 2. The displacement and quenching of a spiral wave by a wave with two defects. (a) ¢ = 0. Initial position of the spiral
wave. The core is shown by a dashed line, the tip is marked by 1. (b) £ = 0.13. A semicircular wave with two defects (tips 2 and
3) is created by a stimulus (u = 0.9) delivered at t = 0 from the electrode [black square in (a)]. (¢) t = 0.3. The semicircular
wave, while propagating, reaches the tip of the spiral wave. (d) ¢ = 0.56. Tips 1 and 2 have annihilated. Again, there is only
one defect (but it is situated at a new location). In a box of smaller size (L = 17, dashed square), tip 3 has reached the border,
and the spiral wave is quenched. (e) t = 1.34. In the original box (L = 30), tip 3 has formed a stationary rotating spiral wave.
Its core is shown by dashed circle 3. The total displacement of the spiral wave is shown by an arrow. Parameters are the same
as in Fig. 1.
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FIG. 3. (a) Distribution of activator and inhibitor in a rotating wave. (b) Space distribution of excitability. 1 is the excited
zone, 2 is the refractory zone, 3 is the vulnerable zone, 4 is the resting zone. An electrical stimulus delivered in zone 4 creates a
circular wave [as in Fig. 1(b)], in zone 3—a semicircular wave [a wave with two defects, as in Fig. 2(b)], in zones 1 or 2—does
not create any wave.
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FIG. 4. Vortex displacement. Right column [(A)-(C)| displacement by a circular wave, left column [(a)-(c)]—by a wave with
two defects. a, A. Electrode locations are shown by arabic numerals, new position of the vortex cores—by roman numerals.
b,B, ¢, C. Dependence of the vortex displacement on parameters. The space unit is the wave length of the spiral.



